Structural learning with time-varying components: tracking the cross-section of financial time series

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural learning with time-varying components: tracking the cross-section of financial time series

When modelling multivariate financial data, the problem of structural learning is compounded by the fact that the covariance structure changes with time. Previous work has focused on modelling those changes by using multivariate stochastic volatility models. We present an alternative to these models that focuses instead on the latent graphical structure that is related to the precision matrix. ...

متن کامل

Machine learning algorithms for time series in financial markets

This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...

متن کامل

Time-Series–Cross-Section Methods

Time-series–cross-section (TSCS) data consist of comparable time series data observed on a variety of units. The paradigmatic applications are to the study of comparative political economy, where the units are countries (often the advanced industrial democracies) and where for each country we observe annual data on a variety of political and economic variables. A standard question for such stud...

متن کامل

Extreme-quantile tracking for financial time series

Time series of financial asset values exhibit well known statistical features such as heavy tails and volatility clustering. We propose a nonparametric extension of the classical Peaks-Over-Threshold method from Extreme Value Theory to fit the time varying volatility in situations where the stationarity assumption may be violated by erratic changes of regime, say. As a result, we provide a meth...

متن کامل

Time-Series–Cross-Section Issues: Dynamics, 2004∗

This paper deals with a variety of dynamic issues in the analysis of time-series– cross-section (TSCS) data raised by recent papers; it also more briefly treats some cross-sectional issues. Monte Carlo analysis shows that for typical TSCS data that fixed effects with a lagged dependent variable performs about as well as the much more complicated Kiviet estimator, and better than the AndersonHsi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Royal Statistical Society: Series B (Statistical Methodology)

سال: 2005

ISSN: 1369-7412,1467-9868

DOI: 10.1111/j.1467-9868.2005.00504.x